Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation.

نویسندگان

  • Daniel Dovrat
  • Joseph L Stodola
  • Peter M J Burgers
  • Amir Aharoni
چکیده

The homotrimeric sliding clamp proliferating cell nuclear antigen (PCNA) mediates Okazaki fragment maturation through tight coordination of the activities of DNA polymerase δ (Pol δ), flap endonuclease 1 (FEN1) and DNA ligase I (Lig1). Little is known regarding the mechanism of partner switching on PCNA and the involvement of PCNA's three binding sites in coordinating such processes. To shed new light on PCNA-mediated Okazaki fragment maturation, we developed a novel approach for the generation of PCNA heterotrimers containing one or two mutant monomers that are unable to bind and stimulate partners. These heterotrimers maintain the native oligomeric structure of PCNA and exhibit high stability under various conditions. Unexpectedly, we found that PCNA heterotrimers containing only one functional binding site enable Okazaki fragment maturation by efficiently coordinating the activities of Pol δ, FEN1, and Lig1. The efficiency of switching between partners on PCNA was not significantly impaired by limiting the number of available binding sites on the PCNA ring. Our results provide the first direct evidence, to our knowledge, that simultaneous binding of multiple partners to PCNA is unnecessary, and if it occurs, does not provide significant functional advantages for PCNA-mediated Okazaki fragment maturation in vitro. In contrast to the "toolbelt" model, which was demonstrated for bacterial and archaeal sliding clamps, our results suggest a mechanism of sequential switching of partners on the eukaryotic PCNA trimer during DNA replication and repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coordination of multiple enzyme activities by a single PCNA in archaeal Okazaki fragment maturation

Chromosomal DNA replication requires one daughter strand-the lagging strand-to be synthesised as a series of discontinuous, RNA-primed Okazaki fragments, which must subsequently be matured into a single covalent DNA strand. Here, we describe the reconstitution of Okazaki fragment maturation in vitro using proteins derived from the archaeon Sulfolobus solfataricus. Six proteins are necessary and...

متن کامل

PCNA acts as a stationary loading platform for transiently interacting Okazaki fragment maturation proteins

In DNA replication, the leading strand is synthesized continuously, but lagging strand synthesis requires the complex, discontinuous synthesis of Okazaki fragments, and their subsequent joining. We have used a combination of in situ extraction and dual color photobleaching to compare the dynamic properties of three proteins essential for lagging strand synthesis: the polymerase clamp proliferat...

متن کامل

The role of the DNA sliding clamp in Okazaki fragment maturation in archaea and eukaryotes.

Efficient processing of Okazaki fragments generated during discontinuous lagging-strand DNA replication is critical for the maintenance of genome integrity. In eukaryotes, a number of enzymes co-ordinate to ensure the removal of initiating primers from the 5'-end of each fragment and the generation of a covalently linked daughter strand. Studies in eukaryotic systems have revealed that the co-o...

متن کامل

Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation

The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence o...

متن کامل

The architecture of an Okazaki fragment-processing holoenzyme from the archaeon Sulfolobus solfataricus.

DNA replication on the lagging strand occurs via the synthesis and maturation of Okazaki fragments. In archaea and eukaryotes, the enzymatic activities required for this process are supplied by a replicative DNA polymerase, Flap endonuclease 1 (Fen1) and DNA ligase 1 (Lig1). These factors interact with the sliding clamp PCNA (proliferating cell nuclear antigen) providing a potential means of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 39  شماره 

صفحات  -

تاریخ انتشار 2014